

Topics

- Acute toxicity testing for agrochemical formulations
- Vision for moving to animal-free approaches
 - > Waivers/Bridging
 - > GHS additivity approach (in silico)
 - > Non-animal alternatives (in vitro)
- Case-Study examples
- What is needed next

Agrochemical Formulation Testing

Global testing of plant protection products (PPP)

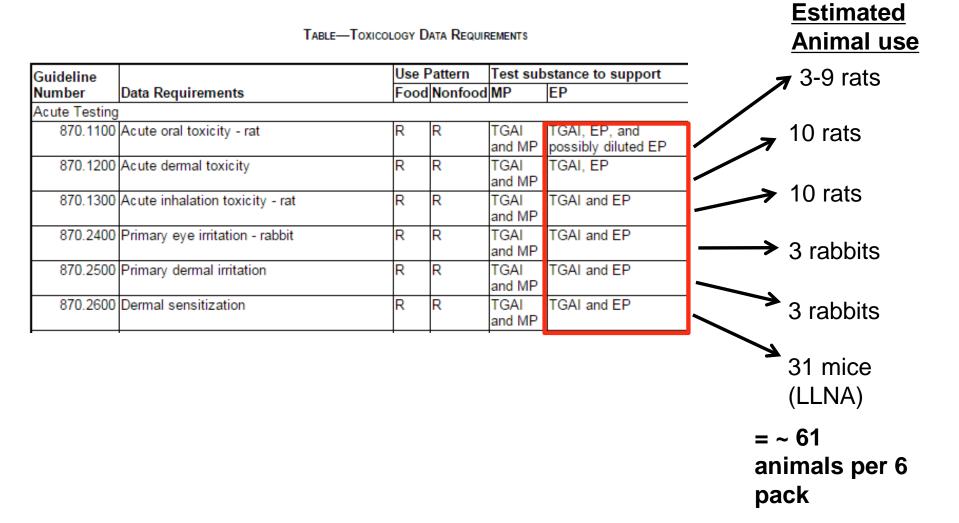
- √ Hazard ID
- ✓ C&L
- ✓ Risk assessment
- ✓ Transport

Global 6-pack

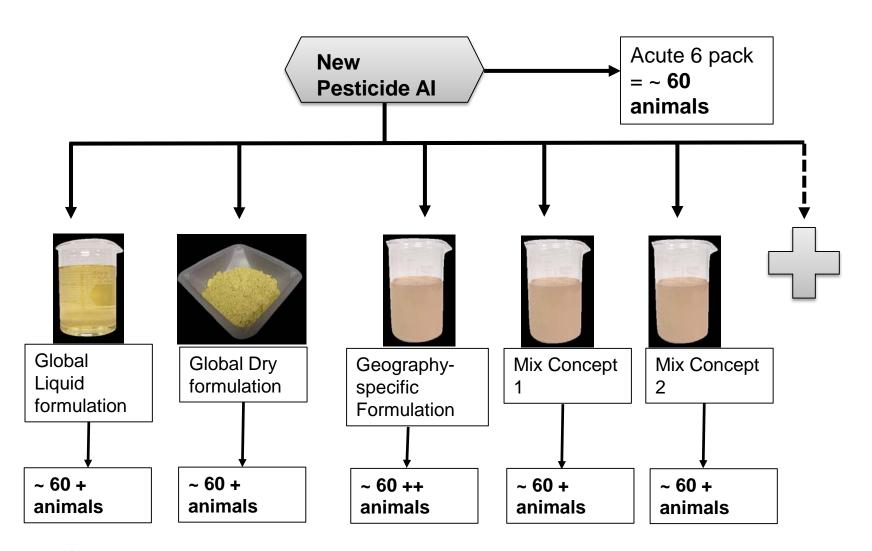
- ✓ Acute Oral
- ✓ Acute Dermal
- ✓ Acute Inhalation
- ✓ Skin Irritation
- ✓ Eye Irritation
- ✓ Skin Sensitisation

EU

Brazil


Ames test

In vitro micronucleus


In vitro Dermal Absorption

Acute 6 Pack – Animal Use

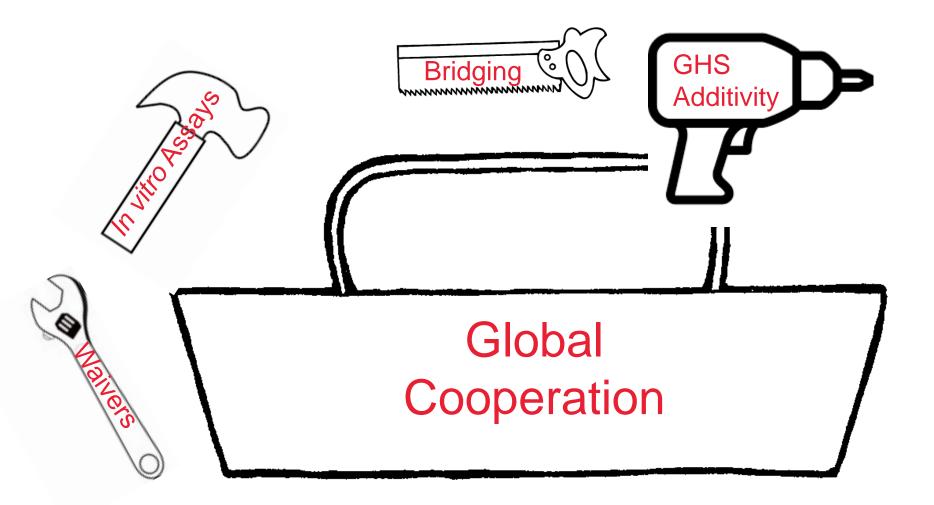
Formulations- The Opportunity

Vision

- Eliminate animal use for assessment of acute health hazards for agrochemical formulations
- How do we make it happen?
 - > See vertebrate testing as a last resort once other options are exhausted
 - > We need a coordinated effort between Industry and Regulators
 - > Need workable approaches for all 6 endpoints

Approach

- Not a one size fits all approach
- We need the right tool for the job
- Sometimes it will take more than one tool
 - > Testing battery
 - > Integrated testing strategy



Use the full tool box

Waiver and Bridging Opportunities

- EPA and PMRA have guidance documents on waiving or bridging acute toxicity studies
 - > http://www2.epa.gov/pesticide-registration/bridging-or-waiving-data-requirements

Waivers

Physical state/properties (e.g. volatility, extreme pH

Product size/design prevents exposure

Study not technically feasible (e.g. aerosol generation)

Properties of TGAI (e.g. known sensitizer)

Bridging/Read-Across

Is there a similar existing formulation with definitive data?

- Same physical form
- Similar concentrations of Al or more dilute
- Similar co-formulants

Interpolation (GHS)

A+B; C+B

GHS Additivity Formula- Systemic Toxicity

- Use for classifying mixtures based on toxicity of ingredients
- Rules
 - Include ingredients with a known acute toxicity which fall into any category of GHS
 - > Ignore: non-toxic ingredients (e.g. water); ingredients with limit-dose test and no toxicity

Ingredient	Weight %	Tox data (mg/kg)	GHS Category
Active	45%	Oral LD50: 500	4
Inert	20%	Oral LD50: 1500	4
Inert	5%	Oral LD50: 200	3
Water	30%	NA	

$$ATEmix = 779 \text{ mg/kg (Cat. 4)}$$

GHS Classification of Mixtures-Irritation/Sensitization

- Classification of mixture is triggered by concentration of ingredients that are classified
- Skin
 - > E.g. Skin Cat 1 ingredient ≥ 5% mixture classified Cat. 1
- Eye
- Skin Sensitization
 - > E.g. Sensitizing ingredient ≥ 1% mixture classified

Assessment of Additivity Method for Formulations

- Retrospective analysis conducted
 - Comparison of results of additivity formula with classification based on in vivo results
 - > 226 agrochemical mixtures

Insecticide Class											
Herbi	cides	Insecti	icides	Fungio	cides	Fun	nigants	Nitrific	cation	Blai (no a	
16	31	37	7	18	3		5	2		3	
Formulation Types											
				1 01	mulat	VII 1	ypcə				
			Liquids	(195)	mulati	VII 1	урсэ	Gel	So	olids (3	0)
SL	EC	SC	Liquids EW		OD	CS	Others	Gel	So WG	olids (3 GR	0) WP

Performance of Additivity Formula

Table 1. Classification based on GHS Additivity Formula (AF) vs. various 6-Pack-based classification systems

Endpoint	ATE criteria	Sample size@	Accuracy*	Sensitivity*	Specificity*	TP/FN *	TN/FP *
		n	%	%	%	n/n	n/n
Acute Oral Toxicity	GHS ¹	203	78.3	69.5	86.1	66/29	93/15
	CLP ²	214	86.9	68.9	91.7	31/14	155/14
	EPA ³	198	78.3	69.9	85.7	65/28	90/15
Acute Dermal Toxicity	GHS ¹	179	93.3	75.0	93.7	3/1	164/11
-	CLP ²	208	99.5	100.0	99.5	2/0	205/1
	EPA ³	179	92.7	60.0	93.7	3/2	163/11
Acute Inhalation Toxicity	GHS/CLP	124	96.8	66.7	99.1	6/3	114/1
	EPA ⁴	124	96.8	57.1	99.1	4/3	116/1
Skin Irritation	GHS ⁵	91	67.0	76.9	63.1	20/6	41/24
	CLP ⁶	117	70.9	32.3	84.9	10/21	73/13
Eye Irritation	GHS/CLP7	212	75.5	89.9	62.8	89/10	71/42
Skin Sensitisation	GHS/CLP/EPA8	204	64.2	58.0	69.0	51/37	80/36

Conclusions

- > Additivity formula should be considered as a stand-alone replacement for acute systemic toxicity
- > For topical contact toxicity, a combination of alternative approaches may be needed to improve predictions

 Presented at Eurotox, 2015

Are Acute Dermal Studies Needed at all?

Critical Reviews in Toxicology, 2010; 40(1): 50-83

Acute toxicity testing of chemicals—Opportunities to avoid redundant testing and use alternative approaches

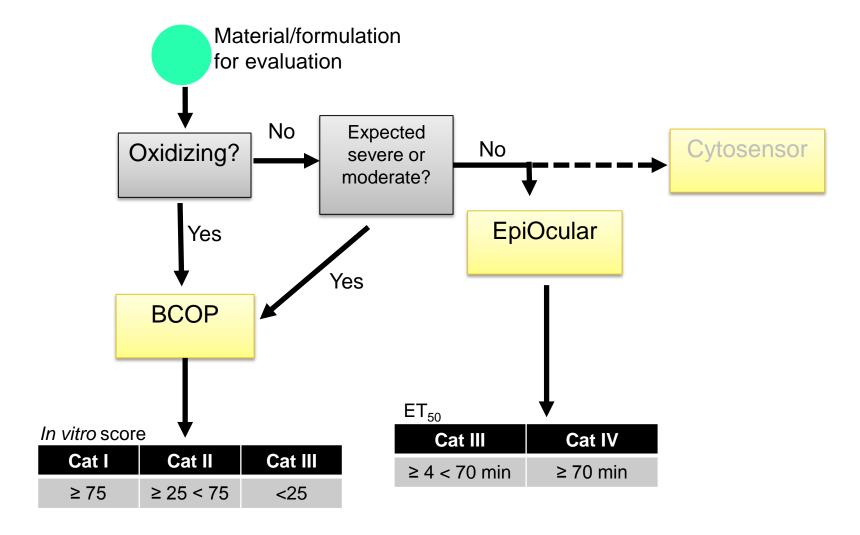
Stuart Creton¹, Ian C. Dewhurst², Lesley K. Earl³, Sean C. Gehen⁴, Robert L. Guest⁵, Jon A. Hotchkiss⁶, Ian Indans⁷, Michael R. Woolhiser⁶, and Richard Billington⁸

Can acute dermal systemic toxicity tests be replaced with oral tests? A comparison of route-specific systemic toxicity and hazard classifications under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

Nigel P. Moore^a, David J. Andrew^b, Donald L. Bjerke^c, Stuart Creton ^{d,1}, David Dreher^e, Thomas Holmes ^f, Pilar Prieto^g, Troy Seidle^h, Tim G. Rowan ^{i,*}

- It's time to revisit acute dermal requirement -- classification is rarely driven by this endpoint!
 - > UK Assessment of 240 active substances- Only 2 (0.8%) had more severe dermal classification compared to oral

Alternatives for Eye Irritation


- 1. Organotypic models
 - > Hen's egg test Chorioallantoic membrane test (HET-CAM)
 - > Isolated rabbit eye test (IRE)
 - > Isolated chicken eye test (ICE) (OECD 438)
 - > Bovine corneal opacity and permeability test (BCOP) (OECD 437)

2. Cell based models

- > Red blood cell hemolysis test (RBCH)
- > Silicon Microphysiometer/Cytosensor Microphysiometer (CM)
- > Fluorescence leakage test (FL) (OECD 460)
- > Neutral red release assay (NRR)
- 3. Reconstructed human tissue models
 - > EpiOcular 3D corneal assay (OECD 492)

EPA Eye Guidance- Antimicrobial Pesticides

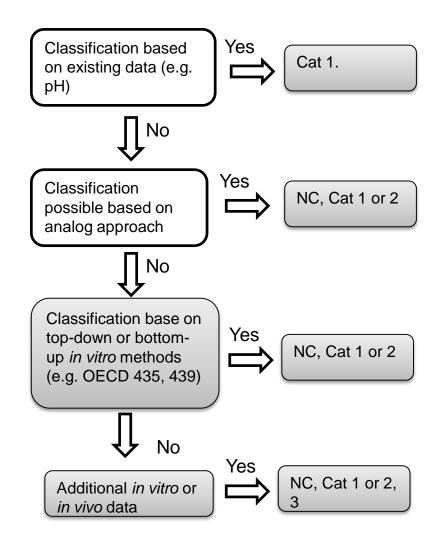
Eye Irritation – Tiered Approaches

ATLA 43, 181–198, 2015

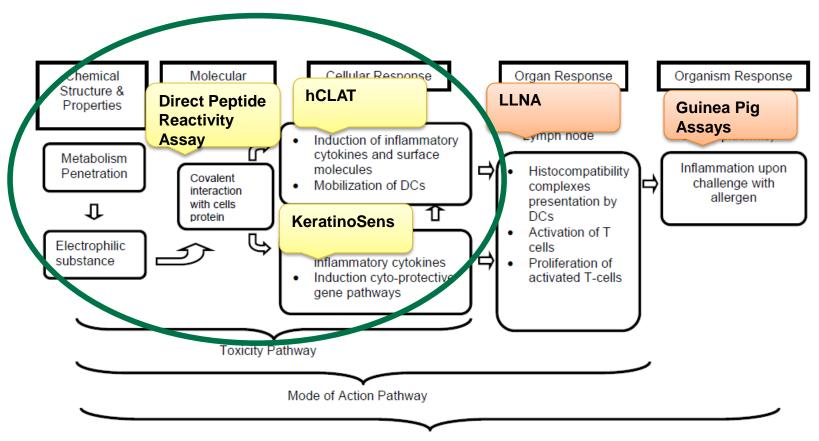
The EpiOcular™ Eye Irritation Test is the Method of Choice for the *In Vitro* Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes

Susanne N. Kolle,¹ Maria Cecilia Rey Moreno,¹ Winfried Mayer,² Andrew van Cott,³ Bennard van Ravenzwaay¹ and Robert Landsiedel¹

¹BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany; ²BASF SE Agricultural Products Formulation Development, Ludwigshafen, Germany; ³BASF Corporation, Research Triangle Park, USA


Eye Irritation – Tiered Approaches

New Agrochemical formulation/coformulant



Alternatives for Skin Irritation

- OECD Guidance on IATA
 - "Depending on country requirements, the now available validated and OECD accepted in vitro methods may satisfy all information requirements for skin corrosion and irritation."

Skin Sensitization Alternatives

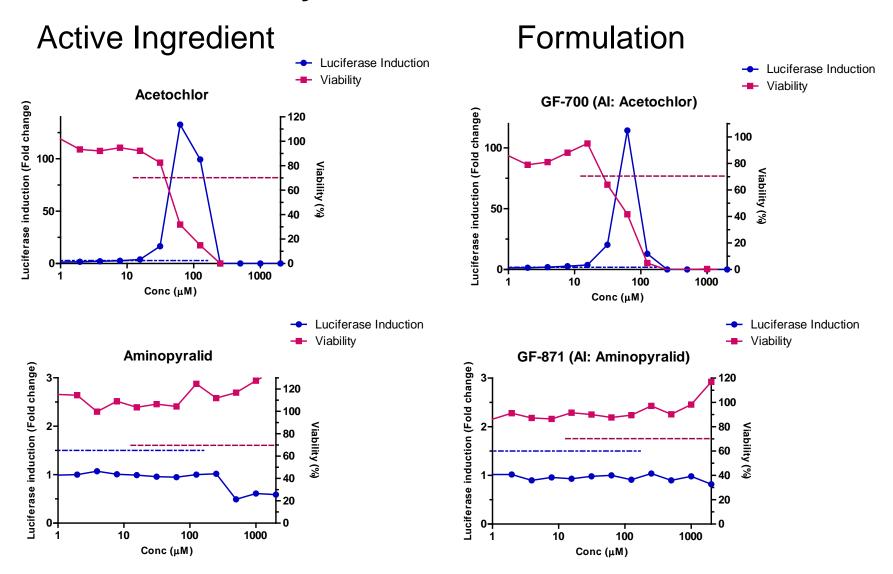
Adverse Outcome Pathway

Regulatory Toxicology and Pharmacology 72 (2015) 350-360

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

Application of the KeratinoSens™ assay for assessing the skin sensitization potential of agrochemical active ingredients and formulations

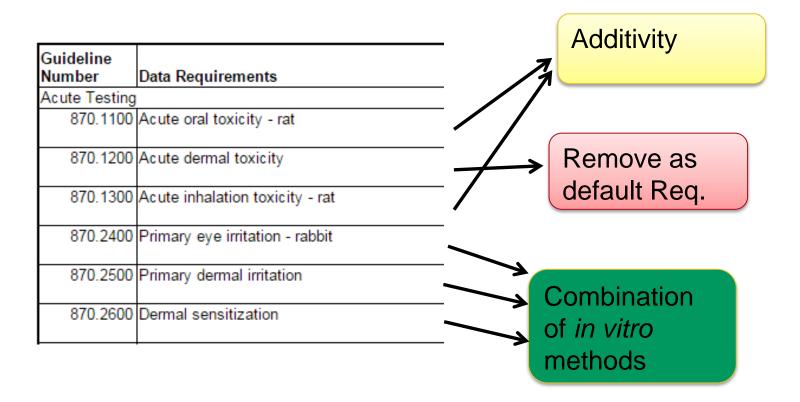


Raja S. Settivari ^{a,*}, Sean C. Gehen ^b, Ricardo Acosta Amado ^b, Nicolo R. Visconti ^a, Darrell R. Boverhof ^a, Edward W. Carney ^a

^aThe Dow Chemical Company, Midland, MI, United States

b Dow AgroSciences LLC, Indianapolis, IN, United States

KeratinoSens Assay for Skin Sensitization



Skin Sensitization-Integrated Approach

Formulation	In Vivo	KeratinoSens	DPRA	Calculation
DAS-1	Positive	Positive	Negative	Positive
DAS-2	Positive	Positive	Positive	Positive
DAS-3	Positive	Positive	Positive	Positive
DAS-4	Positive	Positive	Positive	Positive
DAS-5	Positive	Negative	Negative	Positive
DAS-6	Positive	Negative	Positive	Positive
DAS-7	Borderline	Equivocal	NA	Negative
DAS-8	Borderline	Equivocal	NA	negative
DAS-9	Negative	Negative	Negative	Negative
DAS-10	Negative	Negative	Negative	Negative
DAS-11	Negative	Negative	Negative	Negative
DAS-12	Negative	Negative	Negative	Negative
DAS-13	Negative	Positive	Negative	Negative

Acute 6 Pack – Proposed Alternatives

Suitability of Alternative Methods for Mixtures

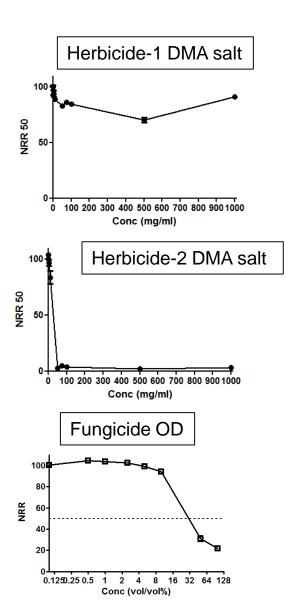
	Method	Applicability To Mixtures/AgroChemicals
	BCOP (OECD 437)	 OECD validation data-based included 100 mixtures Included in EPA Policy
Eye Irritation	EpiOcular (OECD 492)	 Suitable for substances, mixtures, solids, liquids, semi-solids, waxes Included in EPA anti-microbial Policy BASF Publication (Kolle, 2015)
Skin Irritation	EpiDerm (OECD 439)	Suitable for mixtures although limited validation data
Skin	KeratinoSens (OECD 442D)	 Dow Publication shows applicability to agchem formulations (Settivari, 2015) Limited validation (OECD) for mixtures
Sensitization	DPRA (OECD 442C)	Limited information on applicability to mixturesInitial encouraging results

Example 1- Read Across

	Existing Formulation A	Existing Formulation B	New Formulation
Туре	Emulsifiable Concentrate	Emulsifiable Concentrate	Emulsifiable Concentrate
Al- concentration	12%	10%	12%
Solvent	10%	12%	12%
Emulsifier	3%	3%	3%
Balance ingredient	75%	75%	73%
Acute Tox	Cat III Non-sensitizing	Cat IV Non-sensitizing	Proposed: III Non-sensitizing

- How similar is similar?
- Can in vitro testing be used to support read-across arguments?

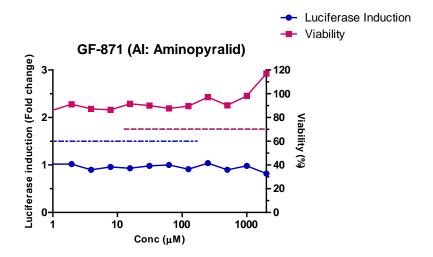
Example #2- GHS Additivity


- Can the additivity approach be envisioned to replace systemic toxicity studies under certain circumstances?
- Is an acute dermal study needed at all? Could a data package without it be considered complete? (is there a information gap?)

Additivity-Based Categorization

	Herbicide Formulation	Insecticide Formulation
Acute Oral	III	II
Acute Dermal	IV	III
Acute Inhalation	IV	III

Example #3- Eye Irritation


- In addition to EPA guidance, can other frameworks be envisioned?
- Tiered testing examples
 - > Herbicide-1 DMA salt
 - NRR: not calculable (non-irritant)
 - Draize: non-irritant
 - > Herbicide-2 DMA salt
 - NRR: 17.5 mg/mL
 - EpiOcular: < 3 (ET40)
 - Draize: strong-irritant
 - > Fungicide OD
 - NRR: 350.2 mg/mL
 - EpiOcular: > 60
 - Draize: non-irritant

Example #4- Skin Sensitization

- New Aminopyralid formulation
 - > Al is clearly negative for skin sensitization
 - > No Sensitizing inerts
- Questions
 - > Could a negative keratinosens result fulfill the data requirement?
 - > What additional information would be helpful?

Putting the Pieces Together

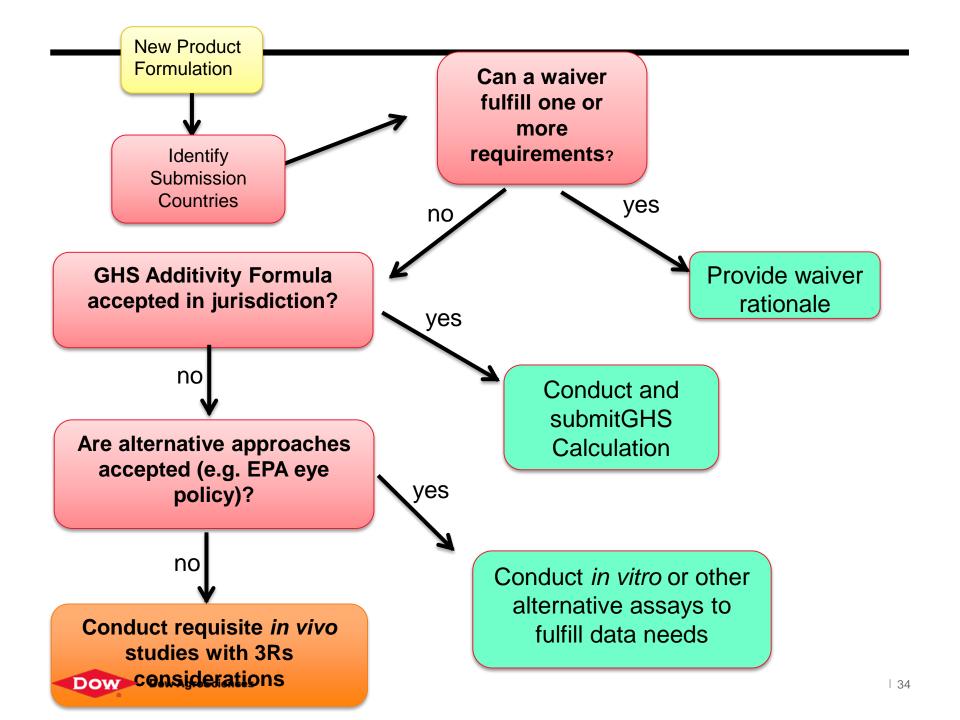
Increased use of Waivers/Bridging

Additivity Formula (<u>systemic</u>)

In vitro
Methods
(topical)

Elimination of studies (e.g. dermal)

Increased harmonization and cooperation


Acknowledgements

- Thanks to DAS Human Health Assessment Group, Actives to Products R&D and Dow Toxicology and Environmental Research and Consulting
 - > Ricardo Acosta Amado
 - > Raja Settivari
 - > Marco Corvaro
 - > Reza Rasoulpour
 - > Dan Wilson
 - > Barun Bhhatarai
 - > Tina Mehta
 - > Nico Visconti
 - > Manoj Aggarwal
 - > Carmen Arasti

